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The equilibrium equations, which govern the equations and boundary conditions for a thin elastic stressed beam with a periodic 
structure, are derived by the method of averaging. Unlike previous publications [1-3], initial stresses comparable with Young's 
modulus of the beam material are considered. © 1999 Elsevier Science Ltd. All rights reserved. 

Previously [1, 2] the three-dimensional problem of the theory of elasticity was converted into a one- 
dimensional problem of the theory of beams when there are no initial stresses. The limiting one- 
dimensional problem was obtained by the method of asymptotic expansions in the small-diameter 
domain. 

Note that the shearing force, which plays an important role in classical beam theory, was eliminated 
in [1] from the equilibrium equations without obtaining any expression for it in terms of the axial 
deformation and curvature (as in classical theory). In this connection, only the "axial force, moments- 
axial deformation, curvature, and torsion" relation must be referred to the governing equations of stress- 
free beams. A different situation arises when there are initial stresses. It was pointed out in [4, 5] that 
the shearing forces in a stressed beam are asymmetrical, so that they cannot be eliminated by the classical 
method. An analysis of the shearing forces led to the derivation of the classical stability equations by 
methods of asymptotic analysis [4], and to stability equations when moments of the initial stresses are 
present [5]. The following order of magnitudes were assumed in [4, 5]: elasticity constants of the order 

-4 of e (which guarantees non-zero bending stiffness as e ---> 0), initial stresses of  the order of e -2 [4] 
(which corresponds to a non-zero axial force), and of the order of e -3 (which corresponds to non-zero 
moments). It was pointed out in [4, 5] that the initial stresses have no effect on the stiffness of the beam 
during torsion, which contradicts the results obtained for a thick rod in [6J. 

In this paper we consider the problem for initial stresses of the order of e-". We will show, in particular, 
that it is in precisely this case that the relation described earlier in [6] arises. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a region Ge, obtained by periodic repetition of a certain periodicity cell P~ along the Ox 1 
axis from --a to a (see Fig. 1). The characteristic size of the periodicity cell (which is identical with the 
beam thickness) ~ ~ 1, which is formalized in the form e ---> 0. As e ---> 0 the region GE, contracts to the 
section I--a, a ] - - the  beam. 

The equilibrium problem for a body with initial stresses has the form [6] 

I O,jaui I3xjax =0 (1.1) 
o, 

for any function v ~ V(G~) = {v ~ HZ(G~) : v(x) = 0 whenxl = -a,  a} (for more detail on these classes 
of functions see [7]). Here, the relation between the actual stresses ~/,  displacements u e and the initial 
stresses o~ has the form 

o~j = ~-4 (a#v (y) + bok / (xl, y))~u~ / 0x I = 8-4A,~kt (y)(x=, y)~u~ / 3x t (1.2) 

-4 . .(p) where 8 aij~(y) are the components of the elasticity constants tensor, bij~(xl, y) = o~t(Xl, x/8)Sa; Oil (X1, 
x/e) are the components of  the tensor of the initial stresses, 8ik is the Kronecker delta and y = x/e are 
fast (local) variables. 
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Fig. 1. 

It was shown in [4], that initial stresses of lower order lead to a stability loss if the axial force or the 
moments are non-zero. We therefore impose the following conditions on the stresses 

(,,;,)=0, (o,:,.)=0, (13) 
Y 

where m is the length of the periodicity cell Y along the Oyl axis (see Fig. 1) and Y = {x/e : x e PE} is 
the periodicity cell in dimensionless variables. 

If conditions (1.3) are not satisfied we must use the models proposed previously in [4, 5]. 

2. A S Y M P T O T I C  EXPANSION 

We will take the asymptotic expansion for the variables of the stresses u e and the trial function v in 
the form [1] 

u e = u (°)(x I) + Eu (l)(x I, y) + . . . .  u f°~(x I ) + ~,  I~u (n)(x I, y)  (2.1) 

= e o~/ (x l ,y )  (2.2) 
hi----4 

v = v(°)(xl) + evO)(xt,y) + .... ~ env('O(xl, y) 
n~O 

(2.3) 

Here y = x/e are the fast variables and xl is the slow variable. The functions on the right-hand side of 
(2.1)-(2.3) are assumed to be periodic in Yl with period m. 

Remark 1. The derivative of a function of the form Z(x1, y) is calculated by replacing the differentiation 
operator in accordance with the rule [1] 

aZ/~x I = Zlx +~.-IZ.ly, ~Zl~x~ = e-ZZ~y (~x =2,3) 

Here and henceforth the Latin subscripts takes the values 1, 2, 3, the Greek subscripts take the values 
-2, 3, m = --4, -3  . . . . .  a n d n  = 0, 1 , . . . .  
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Substituting (2.1) and (2.2) into (1.2) and taking Remark 1 into account we obtain 

~, _e'ar(')_ii = ~, gn-4Aipt(Xl,y)(ulnl)x5 n +,.-l,~ "k,ty,"(n)' (2.4) 
m=--4 n=O 

Here and henceforth we will use the notation: ,ly = c)/Oy I and ,txx = b/Oxa. 
Equating terms of like powers of e in (2.4) we obtain 

( ' )  = a~/kl ( x  I , y )u~ ,~  +4)  + b~k I ( x  I , y)u~,~ +4)  + a t ~  . .~ , . (m+s)  (re+S) 0 ijta~l,.YJ'k.ty + bo.u(xl,y)u,.t~ (2.5) 

Note that ~ .  defined in (1.2) and ~ defined in (2.5) are asymmetric with respect to ij. 
Substituting (2.2) and (2.3) into the equilibrium equation (1.1) and taking Remark 1 into account 

we obtain 

~ I ~¢a+nt"e(')" (n)j_o-l,~(m)~. (n),,d,. --I~ (2.6) 
m=-4n-O GI 

G, = (= = (Xl, y2, .yS) = (Xj ,X 2 / ~ , X 3 / C ) :  X e P~} 

3. T H E  E Q U I L I B R I U M  E Q U A T I O N S  

As was pointed out in [8, 9], the equilibrium equations when using the asymptotic method are obtained 
independently, of  the "stress-strain" relation, i.e. in the case considered, of (1.2). The equations for the 
axial f o r c e s / ~ ) =  (o(/~ n)) and the moment  ~ a  m) = ~s(j~)y,) were obtained for beams in [1]. We will give 
the equilibrium equations taken from [1], which we will use below. These are 

N t . )  = 0 (3.1)  I,Ix 

M ( ~ )  + ~v ('a) = 0 ,  ~ ( - a )  = 0 ( 3 . 2 )  --  kx,lx avig 1Vcxl,lx 

M (-s) N.t~ -2) = 0, ,,(4) = 0 (3.3) -- ~ , l x - -  " t*t,l , lx 

4. T H E  G O V E R N I N G  E Q U A T I O N S  F O R  A B E A M  ( T H E  R E L A T I O N  
B E T W E E N  T H E  F O R C E S  A N D  M O M E N T S  AND T H E  D E F O R M A T I O N  

C H A R A C T E R I S T I C S )  

To obtain the equations considered below we will use relation (2.6) with an appropriate choice o fm  
and n and trial function v. Note  that the equations for oii (-4) and t~ij (-3) are also independent of the 
"stres~straifi" relation (see [1] for more detail), while the specific feature of the problem begins to 
manifest itself with the expressions for (Yij (-'4) and (~ij(-3) obtained from (2.5). We will put m = -4  and 
n = 1 in (2.6) and take the trial function in the form v = ev(y). This leads to the following problem 
(for more detail see [11) 

(-4)_ • Gi ' o~-4)nj =0 on (4.1) 00. 0 - 0 m 71 

where n is the unit vector of the normal to the side surface Y1 of region Gv 
From (2.5) and the definition of the quantities Aiju and biju we can write 

+ a  / ~  ,,, ' t ,(0) * (0) ° ~  ) =  Aq*t(xl,y)u~t.)~ #*,,'*,,,,"*.,x +°i,(xl,Y)fiku*.,x (4.2) 

Proposition 1. Suppose the initial stresses satisfy the equations 

0o~lbx j  =0  in G t, oon j =0 on S t (4.3) 

Then 

o~.jy =0 in Y, o~nj =0  on 7 (4.4) 

where 7 is the side surface of the periodicity cell Y. 
Equation (4.4) is obtained by substituting into (4.4) expansions of the form (2.2) for the initial stresses. 



498 A.G. Kolpakov 

Proposition 2. If the initial stresses satisfy Eqs (4.3), then (ff*ia) = 0. 
According to Proposition 1 the initial stresses satisfy Eqs (4.4). Multiplying the equation from (4.4) 

byy~ and integrating by parts over the periodicity cell Y, we obtain the required proposition. 

Proposition 3. For any function Z(y) that is periodic in Yl with period m, we have the equality 
(o*oZqy) = 0. To verify this it is sufficient to multiply the equation from (4.4) by Z(y) and integrate by 
parts over the periodicity cell Ytaking into account the boundary condition from (4.4) and the periodicity 
conditions. 

Remark  2. The functions of the variablex~ play the role of parameters in the problem in the variables 
y [10]. The same occurs when integrating with respect to the variable y. 

Problem (4.1) is written in the variables y. Taking Remark 2 into account, the solution of problem 
(4.1) can be represented in the form 

u O) = N~ l (y)u(p°~x(xl) + yespef~x~ ) + V(x t) (4.5) 

where [~(Xl) is an as yet undefined function (which has the meaning of the torsion of the beam), V(xl) 
is an as yet undefined function (having the meaning of the axial displacement), sa = 0, s: = -1 and 
s3 = 1, the subscript B = 2 if 15 = 3 and B = 3 if ~ = 2, {e i} are basis unit vectors of a standard rectangular 
system of coordinates, and NoPl(y) is the solution of the cell problem 

(Ai#t(Y)NPa~.ty + aqpl (Y) + bql, I (Y))dy = 0 in Y (4.6) 

(Ai#t(y)NPo~,ty +a#p1(y)+b#p1(y))n j = 0 on 7 

N~1(y) is periodic in Yl with period m. 

Proposition 4. Cell problem (4.6) has the particular solution N~l(y) = -y~eb and the homogeneous 
problem corresponding to (4.6) has the solution X(y) = yDs~e~. 

Proposition 4 is important in view of the fact that it is precisely the presence of explicit solutions 
which enables formula (4.5) to be obtained. 

We first note that bijel(Y)/y = cY*blj, jySip = 0 in Yby virtue of (4.4), and bijpl(Y)ny = O*lyn/~ie = 0 on 7 
also by virtue of (4.4). 

Further we will verify that -y~el is a solution of cell problem (4.6). Substituting -y~el into the left- 
hand side of the equation from (4.6), taking into account the definition of the quantities Aiju and bij.kt 
w e  obtain ( -  aijlet(y ) + bijlct(y)] + aijetl(y)),jy = (---a/jlct(y) + ai/etl(y)),jy -bijl~,jy. The latter expression i s  
equal to zero. In fact, --aijla(y ) + aijctl(y ) = 0 by virtue of the symmetry of the elasticity constants [3], 
while b,.1-9 = 0 by virtue of (4.4). It can similarly be verified that, by virtue of (4.4), (-[aijla(y) + bi#a(Y)] 
+ ao.~x(y)'3n j = 0 on 7- 

We will verify that the function Ynsl~el~ is a solution of homogeneous cell problem (4.6). Substituting 
Yosl~ ~ into the homogeneous equation corresponding to the equation from (4.6) and taking the definition 
of the quantities Aij~ and bii~,l into account, we obtain 

(ail~n + b~asls)dy = (a#z ~ - aqa2).jy + bo~a, jysfj = 0 

in view of the symmetry of the elasticity constants [3] and (4.4). Similarly, for the function YnSl~el~ and 
the homogeneous boundary condition from (4.6), taking into account the symmetry of the elasticity 
constants [3] and Eqs (4.4), we obtain that 

(ai~ B + bi~Bs ~)nj = 0 on 7 

As a result, (4.5) can be written in the form 

u O) II (0) = N O (y)ulax(x I ) - yctelU~x(X I) + YBSl3ep~(xt ) + V(x I ) (4.7) 

Note that, in the case considered, the solution of the cell problem depends on the initial stresses, 
since the principal coefficients in cell problem (4.6) areA#n. The investigation of the cell problem carried 
out earlier in [11, 12] for monolithic composites (it differs from (4.6) in the boundary conditions) showed 
that, in general, the solutions of the cell problem depend in a complex non-linear way on the initial 
stresses. 
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Substituting (4.7) into (4.2) and taking into account the definitions of A#m and bijja we obtain 

i~}j 4) = (ailal (y) + ~1 (Xl, y)8/a - aijlcx (y ) -  c~x (x,, Y)~il )ufa°.~y (xl)+ (4.8) 

+(Ai) t j (xl, y) + A~ita (xl, y)N~,ty (y))u~,°t!v (x I ) + (aol~s (x,, y)sp + o ~  (x z , Y)Si55,~ N~(xi ) 

Averaging (4.8) over the periodicity cell Y, and taking into account the symmetry of the elasticity 
constants [3], Remark  2 and Proposition 2, we obtain 

N/} "') = (6~ "')) = ((O;l)~i~ -(a~)~,l)u(a°~y(Xl )+ (4.9) 

I I (0) * + (Aijtl(xt,Y)+ Aij,t(xl,Y)N~k.ly(y))ut.ty(Xl)+(~jB)s~5,1~*(x') 

When ij = 11, by virtue of Proposition 2 and conditions (1.3), the last formula in (4.9) takes the form 

N ~ '  =(c~4))  = a(G)u~°Ix(xt), a(G)=(a,m(Y)+At,kt(x,,y)N~.ly(Y)) (4.10) 

Although in general there is no guarantee that the quanti tyA (c~), which has the meaning of stiffness 
to tension, is positive, we can state the following sufficient condition for it to be positive 

~;,I,~ ~#ktl (4.11) 

Condition (4.11) is "physically natural", since the initial stresses cannot exceed the tensile strength 
of the beam material, which in turn does not exceed 0.01 of Young's modulus (and is often less) [3]. 

From the condition forA(o)  to be positive, the equilibrium equation (3.1) and the boundary condition 
u(t°)(--a) = u[°)(a) = 0, which follows from (2.1), we can conclude that u~°)(xa) = O. 

Hence, when condition (4.10) is satisfied, Eq. (4.7) takes the form 

u 0 )  =-yc, e,u(°~xx, + y,spel~O(x,)+ V(x,) (4.12) 

which is identical with the form of the function u (1) in the problem for a stress-free beam [1]. 

Proposition 5. Equilibrium equations (3.2) are satisfied identically when conditions (1.3) and the 
conditions of Proposition 1 are satisfied. 

To verify this consider the quantities in (3.2). Taking (4.12) into account, Eq. (4.8) gives 

We integrate this equality over the periodicity cell Y. We also integrate this equality over the periodicity cell, 
first multiplying it byyl~, withj = 1. Taking into account Remark 2 and Proposition 2, we obtain 

N/(j "4) = (((~l~ia -(O*ja)Sil~(O~y(Xi)+(O;B)s~Sil30( x' ) (4.13) 

M~ -41 ; ({O~',YI~ ~/a  - ( o ~ y p  }gi, )u(c0]y( x, )+ (o;yp }sl~g,l~(x, ) 

Formula (2.5) with m = -3 yields 

(--3)= Aijkl (Xl ,y )uII]x + Aijld(Xl ,Y )uI2~y O# 

Substituting expression (4.12) into it, we obtain 

0! -3) =-Aijll(Xi,y)yotu{Oa,~xlx(Xl)+ Ai.~i(Xl.y)yBSftfP, lx(Xl)+ (4.14) q 

+A,j., y) + ao.  

Equilibrium equations (3.2) with i = 1 contain the undefined function Nl(~x 3). To eliminate it from (3.2) we consider 
the difference N1~ 3) - NI~ 3), which, using (4.14) and the definition of Aije, can be written in the form 
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+((~:l--(~;ISal)YB )SlS~.Ix +(O:'~lt~--(~;l~al)V~. 1" (4.15) 

The coefficients on the right-hand sides of the formulae for N~ ), Mi~ '4) from (4.13) and in (4.15) are equal to 
zero by virtue of conditions (1.3) an Proposition 2. Consequentl3~, Eqs (3.2) are satisfied identically when i = I. 

We will investigate the next terms of the asymptotic expansion. We now choose m = -3, n = 1 and 
v = ev(y) in (2.6). We then obtain the problem 

a(-s) = 0 in G i, o~-S)ni = 0 on YI (4.16) ~/,iy 

Consider the next cell problems: the cell problem with respect to the functions N2~'(y) 

2a ~ * (Aijta(Y)N~k.ty- #II(Y)Ya-"jl(xt,Y)~ilYa),ij =0  in Y 

2a a * ( 4 . 1 7 )  (Ai~(y)N~k., , - #ll(y)ya--.)l(xl.Y)SilYa)nj =0 on y 

N~(y) is periodic in Yl with period m. 
The cell problem with respect to the function X3(y) has the form 

(A/jk/(Y)Xo3,./, +ao~,(y)ynsl~ +(~,(x,,y)8,11y,sfj)j, =0 in r 

(Aijta(Y)X~k.,, +ai~t(Y)YsSl~ +,jl(xl,y~,.~yss~)n I =0 on y (4.18) 

X3o(y) is periodic in Yl with period m. 
II 2Ix 3 Then, taking Eqs (4.14) into account and using the functions No, No,  Xo, the solution of (4.16) can 

be written in the form 

2a (o) s It u (2) =N o (y)u&.txtx(xO+ Xa(y)C~.tx(xt)+N, (y)Vl.,x(Xl)-- YaetVQ.t,(X,) (4.19) 

and substituting (4.19) into (4.14) we obtain 

2a (o) + (-S) = (A~ill(x,.y)y a + Aota(x,,y)N~k.b,(Y))Ua,,xlx(x, ) (llj 

+(A#lil(x,,y)yns ~ + Aqta(xl,y)X~k,ty(y))dd.lx(x,)+ 

+(A(/,,(xt,y) + Aqkt(x,.y)N~tk,ty(y))Vm.tx(x,)+ 

"l'(Aija, (Xl, Y) + Aijla (Xl, Y))Va, lx (Xl) (4.20) 

• We integrate (4.20) over the periodicity cell Y. Taking the definitions of Aijkt and b~jk~ and Proposition 
2 into account, we obtain 

N~-s) o ~. . t  ,(0l + B~/,, x (4.21) = A# Vt.lx - .,,ija.a, lxlx , 

We multiply (4.19) by Y13 with j = 1 and integrate the result over the periodicity cell Y. Taking the 
second condition from (1.3) into account we obtain 

A2 .(o) _,_ n l  A (4.22) M~-3) =1 Ail3VI,I x + ~/ l~ 'a ,  lxlx .-r .,.,,i~l,,ix 

where 

0 !1 ~jla(xt,Y)Nak.ty(Y) Aij =< Aijk! (Xl, Y) + > 

l A i~  =~ AijII(xI,y)y a + Aifld(xt,y)N2~,ty(Y)> 
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' A,13 =< (A#n(xt,y)+ Ama(x,,y)Nta~,ty(Y))Yp > 

• A ~  =<(Ai],t(x,,y)y " + Aijta(Xl,Y)N~.ty(y))y, > (4.23) 

B ff =< 1~.~l(Xl,y}yasll + a~ita(xl,Y)X~t.ty(Y ) > 

= <  + > 

Formulae (4.21) and (4.22) are the equations of the stressed beam. The coefficients (4.23) of formulae 
(4.21) and (4.22) define the stiffness of the beam for extension, bending and torsion. Although formulae 
(4.23) are similar in form to the formulae for stress-free beams from [1], there is an important difference 
which is that the coefficients in (4.23) and the solutions of the cell problem depend on the initial stresses. 

Using Propositions 2 and 3, formulae (4.23) can be written in the following form 

a 0 =<aqta(x,,y)+a#kl(x,.y)Nlalty(y)> 

A~  t =~ acn ( xl , y )y.  + a¢lt( xl , Y )N~,ty(Y ) > 

' A,13 =~: (aitt,(x,.y)+ai,ta(xl,Y)N~,t,(y))ygl >+ 

< * N i l  + 

A2~t = < (aij,,(x,,y)3,, +aij~(x,,y)Ng,.ty(y))yl3 > + < crl,(xt,y)y.yl5 > 81, (4.24) 

+ < (Iit(xl,Y)N~.t,.(Y)Y , > 8i1 
• 3 ~0 = < Aij~l(xl,y)yssfl + Aqtd(xl,Y)X~k, ty(y ) > + < O fl(xl ,Y)X~,,ty(y) > 8i k 

Bill = < (Aiffl,(x,,y)yssfl + Ai,kt(xl,y)X~l.6,(y))yfl > + < (;~t(xt,y)y.tyl3 > s.t~i, t 

As can be seen, in general all the stiffness characteristics of the beam depend on the initial stresses. 

5. SHEAR FORCES 

In the asymptotic theory shearing forces play a role that differs from the axial forces and moments. 
This role is determined by their position in the equilibrium equations. 

The equilibrium equations with i = 1 give, in particular 

-M ~-3" ~ - '-"N~t ") =0, ~(-2) = 0 I~,ix ~'ctl,lx (5.1) 

The quantities Nt~ 2) and Na(i 2) in (5.1) have the meaning of hearing forces in the case of a classical 
uniform beam. We will retain this meaning for them in the case in question. If N~ -2) were symmetric 
for ij (like the stresses or forces are symmetric in the problem without initial stresses [3]), they could 
be eliminated in the usual way, namely, by differentiating the first equation in (5.1) and then using the 
second equation to eliminate NI(~ 2). In the case considered there is no symmetry with respect to ij. We 
will proceed as follows. Noting that in expression (2.5) for m = -2  some of the terms are symmetric 
with respect to ij while some are not, we can write the equation 

_ jail , : x>+<(b i j ,  t t. i(3) - -  "j ikl  ] " k , l x  > 

By Proposition 3 the last term on the right-hand side is zero. Substituting (4.19) into this equation 
we obtain 

K, --< (bo,,-b,i,,)<: > v, ,x,x-< (b,,, , - b,,. ),° > V..,x,x + 

+ < (bq,,-bjikt)N~ ,.(o).~.txtx,x +..It.. Wij~, -bji~,)X~k > *.,xtx (5.2) 
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By virtue of the second condition from (1.3) 

< > =  < ° : °  > 8 . - <  > s, ,  = 0  

When ij = l [ I  we obtain 

K,I~ = klIVux,, + kl~U~Ixtxix + ~0.,x,x (5.3) 

where, taking into account the definition of b0kl 

--* i r l l  --* , i I I  
kp = < op t r%k  > - < on. ,vok > 5 l~ 

k~ _ _ *  ,,11 * 11 
= ,~ ol31r~,k > - < oiiN~k > 5~ (5.4) 

• 3 /p = < %,X0k > 8,~- < c~tX~, > 8~ 

The equation for the bending moments follows from (5.1) (it is obtained by differentiating the first 
equation of (5.1) and substituting NI~ -2) = Nl~(1-2) + KII~ using the second equation of (5.1)) 

(-3) ( 5 . 5 )  -M~I~,I~ u = Klp.i ~ 

The quantity M ~  3) is defined by (4.22) while K18 is the defined by (5.3). 
• • . ( - 2 )  Hence, (5.5) does not contain the stnctly,~,shear.~_~ ~rorces N~,j . , but only their" antis" ymmetnc" part, gwen" 

by (5.3). To calculate the shearing forces Ni) themselves, it is necessary to obtain the next terms of 
the asymptotic expansion. This is not required for calculating the anti-symmetric part of the shear 
forces. 

For the torque M = M~22) - M~ 2) we obtain from the first equation of (3.3) -M, lx = (N3~2 -2) - N(232)). 
By (5.2) we have 

K32 = kVl,,xtx + kau(~°Ixtx,x + l*.,x,x (5.6) 

where we have taken into account the definition of bijkj 

_*  ayll * I! * M2Ct _*  ae2a 
k m < 021P/ok  > ~3k--  < (~31Nok > 6 2 k ,  ket = < G21,,ok > ~3k--  < u311¥ok > ~2k (5.7) 

• 3 * 3 l = < 02~X:, k > 53k -  < c~3~X:,k • 52k 

As a result we have the following equation for the torques 

- M, is + Ks2 = 0 (5.8) 

The quantity M is defined by (4.22) and K32 is defined by (5.6). Note once again that Eq. (5.8) does 
not contain the shear forces themselves but only their antisymmetric part. 

The solutions of the cell problem, as was pointed above, are determined apart from a constant. 
Moreover, the solution of cell problem (4.18) is determined apart from the function y#l~ef~t~(xx). 

Proposition 6. The above arbitrariness in determining the solutions of the cell problem has no effect 
on the value of (5.4) and (5.7). 

In (5.4) and (5.7) this arbitrariness leads to the occurrence of the terms ((~*il) and (O*alyB). These 
terms are equal to zero in view of condition (1.3) and Proposition 2. 

6. BOUNDARY CONDITIONS 

When the beam is rigidly clamped, we obtain the following equations from the initial boundary 
condition u~(x) = 0 whenxl = -a, a and expansion (2.1) as in [1] 

Vl(_a) = Vj(a)= u~) (_a)  = u(aO)(a) = (o) . . 
ua . lx( -a  ) = u(°.~x(a) = K - a )  = ~ a )  = 0 (6.1) 

In the case of a hinge support we also obtain the classical boundary conditions. 
Differences arise when considering the free edge. In this case, taking n = 0, 1 and the trial function 

v in the form v(xl) and ELV2V2(X1) -I- y3v3(Xl)], we obtain 
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N~t"3l('-a)=N'~lt:3)(a)=0, M~q~3)(-a)ffiA~ll~:31(a)=0, M(-a)=M(a)ffiO (6.2) 

N(.,'t')(-a) = N(~/') (a)  ffi 0 (6 .3)  

Equation (6.3) is inconvenient to use since, to obtain an expression for N(12) in terms of the 
deformation characteristics, we must construct the subse~luent terms of the expansion. We will proceed 
as follows. According to equilibrium equation (3.3) - M f ~  u + N¢12) = 0, including when xl = --a, a. 

• • - 2 )  - 2 )  • - 3 )  - -  • Substttutmg N(la  = N(ctl + g la  here we obtain 'M(~a, u + Kta = 0. Whenxl  = -a,  a we obtain 

M i-s) + Kia = 0 when xj - a,  a (6.4) - -  l e t ,  I x  " ~  

Equation (6.4), which replaces (6.3), contains only the functions V1, u~ °), ~. 

7. C Y L I N D R I C A L  BEAM 

Suppose we have a classical cylindrical beam of a homogeneous isotropic material, in which only an 
axial force acts. The latter means that oSt # 0, 6 F = 0 when ij # 11. 

In the case considered, the functions a#~, 6~ are independent ofyl and the solutions of the cell problem 
can be sought in the form of a function of the ar~:uments y2 andy  a [1]. We have (Z denotes one of the 
functions--the solutions of the cell problem Nnl(No ~ or X3o)Aij~Z~, 0 = AijkaZk,~ = a#kaZk,ay by virtue 
of the fact that Aijk,z = a#k,x + a]*~,'k and oj*a..= 0 .  

The free terms in the equations ot  the cell problem (4.6), (4.18), (4.19) are equal to zero by virtue 
of Proposition 12 and the fact that 6~ = 0 when ij ~ 11 (this can be checked by differentiating them). 

For the free terms in the boundary conditions of the same cell problem, by virtue of Proposition 1 
and the fact that nl = 0 on T and o*a = 0, we have 6*lnj = 0 on y. 

By virtue of this, the cell problem in the case considered is identical with the cell problem for a 
cylindrical stress-free beam, considered previously [1], and N n ,  N~,  No 3 in (4.24) can be replaced by 
N 11, N za, Xa~the  solutions of  the cell problem for a stress-free beam (obtained from (4.6), (4.28) and 
(4.29) when 6~ = 0; for more detail see [1]). Taking this into account, formulae (4.24) in the case 
considered can be written in the form 

AO = A~I(O), A~iu = A~(O ), 'A~--'A/ll(O ), B~ij = B~(O ) 

AL - AL to)+ (o;, y),,.y,)8,, (7.1) 

| * = n+(o)+ (,,,, (x,,y)y.,,)s.s., 

The quantity F is defined in the same way as B. The argument (0) denotes the stiffness of the stress- 
free beam. According to (7.1), in the case considered, the initial stresses only affect the stiffness for 
bending and torsion. 

Consider the stiffness for torsion. In the classical case it is defined as B = B12 - B~3. We have the 
following expression for B 

In this formula the last term is found to be identical with the term which takes the initial stresses into 
account from [6]• 

R E F E R E N C E S  

1. KOLPAKOV, A. G., Calculation of the characteristics of thin elastic rods of periodic structure. Prikl. Mat. Mekh., 1991, 55, 
3, 440--448. 

2. KOZLOVA, M. I., Averaging of the three-dimensional problem of the theory of elasticity for a thin non-uniform beam. Vestnik 
MGU. Set 1. Matematika, Mekhanika, 1989, 5, 6-10. 

3. RABOTNOV, Yu. N., The Mechanics of a Deformable Solid. Nauka, Moscow, 1979. 
4. KOLPAKOV, A. G., The problem of the theory of beams with initial stresses. Zh. PriM. Mekl~ Tekl~ Fiz., 1992, 6, 139-144. 
5. KOLPAKOV,, A. G., The asymptotic problem of the stability of beams. The loss of stability on bending/twisting. Zh. ~kL 

Mekh. Teld~ Fiz., 1995, 6, 133-141. 



504 A.G. Kolpakov 

6. WASHIZU, If,, Variational Methods in Elasticity and Plasticity. Pergamon Press, New York, 1968. 
7. LIONS, J.-L. and MAGENES, E., Problems aux Limites Non-homogenes et Applications. Dunod, Paris, 1968. 
8. ANNIN, B. D., KALAMKAROV,, A. L, KOLPAKOV, A. G. and PARTON, V. Z., The Analysis and Design of Composite 

Materials and Structure Elements. Nauka, Novosibirsk, 1993. 
9. KALAMKAROV, A. L., KOLPAKOV, A. G.,Ana~ysis, Design and Optimization of Composite Structures. John Wiley, Chichester, 

1997. 
10. BAKHVALOV, N. S. and PANASENKO, G. R, Averaging Processes in Periodic Media. Nauka, Moscow, 1986. 
11. KOLPAKOV, A. G., The stiffness characteristics of stressed inhomogeneous media, lzv. Akad. Nauk $$$R. MTT, 1989, 3, 

66-73 
12. KOLPAKOV, A. G., On the dependence of the velocity of elastic waves in composite media on initial stresses. Comput. Struct. 

1992, 44, 1/2, 97-101. 

Translated by R.C.G. 


